

Natural hazard impacts on transport infrastructure in Russia

Elena Petrova

Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia (epgeo@mail.ru)

5 **Abstract.** Transport infrastructure is considered as a large and complex technological system including railway and bus stations; tunnels, overpasses, and bridges; sea- and river ports; airports; roads, railways, and waterways, as well as other structures, buildings and equipment ensuring the functioning of transport. Almost all of the transport infrastructure facilities are exposed to natural hazard impacts of different genesis. Such impacts pose a threat to transport safety and reliability, trigger accidents and failures, cause
10 traffic disruptions and delays in delivery of passengers and goods. Under conditions of climate changes, these harmful impacts with negative consequences will increase. The transport infrastructure of Russia is exposed to multiple impacts of various natural hazards and adverse weather phenomena such as heavy rains and snowfalls, river floods, earthquakes, volcanic eruptions, landslides, debris flows, snow avalanches; rock falls, icing conditions of roads, and others. The paper considers impacts of hazardous
15 natural processes and phenomena on transport within the area of Russia. Using the information of the author's database, contributions of natural factors to road, railway, air, and water transport accidents and failures are assessed. The total risk of transport accidents and traffic disruptions by adverse and hazardous natural impacts is assessed at the level of Russian federal regions.

20 **Keywords:** Transport infrastructure, natural hazards, transport accident, traffic disruption, database

1. Introduction

Transport infrastructure is considered as a large and complex technological system including railway and bus stations; tunnels, overpasses, and bridges; marine terminals and seaports; ports on inland waterways; 25 airports; sections of roads, railways, and inland waterways, as well as other buildings, structures, devices, and equipment ensuring the functioning of the transport system. The Russian Federation (RF) has a very extensive transportation network that is among the largest in the world. It includes 1.5 million km of public roads, more than 600,000 km of airways, 123,000 km of railway tracks, and 100,000 km of inland navigable waterways (Rosstat, 2018).
30 Throughout the area of Russia, almost all of the listed facilities of transport infrastructure are exposed to the undesirable impacts of adverse natural processes and phenomena, as well as natural hazards of various genesis, such as geophysical, hydro-meteorological, and others (Geography..., 2004). These impacts may endanger transport safety and reliability, trigger accidents and failures, disrupt the normal operation of transport system, cause delays in delivery of passengers and goods, and lead to other negative consequences.
35 All natural hazards can be divided into two groups, based on their origin, features of time variability and spatial distribution, as well as the impact pattern on the transport infrastructure (Figure 1). Solar and geomagnetic disturbances (space weather), geodynamics, geophysical and astrophysical field variations, and other global processes belong to the first group. They have global scale in space and cyclic 40 development in time. They may influence the infrastructure both directly, causing electronics error and automatic machinery failure, as well as indirectly, by reducing reliability of operators, drivers or pilots (Petrova, 2005). Geological, hydro-meteorological, biological, and other natural hazards belonging to the second group cause a direct destructive effect leading to accidents and disruptions.
45 A transport accident is any accident that occurs when people and goods are transported. With over 1.2 million people killed each year, road accidents are among the world's leading causes of death; another 20–50 million people are injured each year on the world's roads (WHO, 2017). Transport accidents of other types including air, rail, and water transport are not as numerous as road crashes, but the severity of their consequences is much higher because of the higher number of people killed and injured per accident. Shipwrecks with a large number of passengers have the highest number of casualties.
50 Traffic interruptions and disruptions cause multiple social problems because our societies are highly dependent on the transport system for people's daily mobility and for goods transport (Mattsson and Jenelius, 2015). In the case of emergency situation, transport network serves as a life-line system. Thus, ensuring the robustness and reliability of the transport system is one of the most important and pressing problems of the socio-economic development of any country. In May 2018, the Ministry of Transport of the RF has developed a new version of the Transport Strategy up to 2030 (Transport..., 2018). Among
55

the key priorities, the Transport Strategy includes requirements to cope with the modern challenges, such as climate change and a need for increasing the safety of the transport system.

Since the early 1950's (Tanner 1952), it has been recognized that weather conditions affect many road (un-)safety aspects such as driver's attention and behavior, vehicle's operation, road surface condition, etc.

60 A large number of studies devoted to the influence of adverse weather conditions on the accident rates of motor vehicles were published over the last decades (Brodsky and Hakkert 1988; Edwards 1996; Rakha et al 2007; Andrey 2010; Andersson and Chapman 2011; Petrova 2013; Bergel-Hayat et al 2013; Chakrabarty and Gupta 2013; Jaroszowski and McNamara 2014; Spasova and Dimitrov 2015; Shiryaeva 2016). All the authors agree that the weather is a major factor affecting road situation. Some authors

65 consider other natural hazards, such as landslides (Bil et al., 2014; Schlögl et al., 2019), flash floods (Shabou et al., 2017) or rock falls (Bunce et al., 1997; Budetta and Nappi, 2013). However, no integrated review of all kinds of natural hazards exists.

As for railway transport, most of papers also focus on specific hazards, considering impacts of adverse weather and hydro-meteorological extremes (Ludvigsen and Klæboe, 2014; Nogal et al., 2016),

70 landsliding (Jaiswal et al., 2011), flooding (Hong et al., 2015; Kellermann et al., 2016), snowfall (Ludvigsen and Klæboe, 2014) or tree falls (Nyberg and Johansson, 2013; Bil et al., 2017). Some studies combine all types of natural hazards affecting road and rail infrastructure (Govorushko 2012; Petrova, 2015; Kaundinya et al., 2016); Voumard et al. (2018) examine small events like earth flow, debris flow, rockfall, flood, snow avalanche, and others. None of the studies provides a comprehensive analysis of the

75 harmful influence of natural events.

Investigations of natural hazard impacts on other transport systems than roads and railways are not so numerous. As example, studies about danger of volcanic eruptions to the aviation should be mentioned (Brenot et al., 2014; Girina et al., 2019).

80 Only few researches investigate impacts of global processes, such as geomagnetic storms (space weather) and seismic activity. In the early 1990's, Epov (1994) found a correlation ($R=0.74$) between solar activity and temporal distribution of air crashes. Desiatov et al. (1972) argue that the number of road accidents multiplies by four on the second day after a solar flare in comparison to "inactive" solar days. According to Miagkov (1995), solar activity affects operators, drivers, pilots, etc., causing a "human error" and "human factor" of accidents. Kanonidi et al. (2002) study a relationship between disturbances of the

85 geomagnetic field and the failure of automatic railway machinery. Kishcha et al. (1999), Anan'in and Merzlii (2002) examine a correlation between seismic activity and air crashes.

The main purpose of this study is to investigate impacts of natural hazards on the transport infrastructure and transport facilities in Russian regions. Using the information collected by the author in the database of technological and natural-technological accidents, contributions of natural factors to road, railway, air, and water transport accident occurrences and traffic disruptions are assessed. All types of natural hazards are considered excluding impacts of global processes (left side in Figure 1) that are not listed in the database. The total risk of transport accidents and disruptions caused by adverse and hazardous natural events is estimated for the area of Russia.

95 **2. Materials and methods**

2.1. Study region

The Russian Federation is the study region.

Federal regions of the RF were taken as basic territorial units for which all the calculations were performed during the study. Federal regions are the main administrative units of the Russian Federation; at this territorial level, all official statistics are published by the Federal State Statistics Service (FSSB) and other federal institutions of Russia.

The main administrative units of the RF comprise of 85 federal regions, including 22 Republics, nine Territories (Kraies), 46 Regions (Oblast's), one Autonomous Region / Autonomous Oblast' (Evreiskaia (Jewish) AO), and four Autonomous Districts (AD) / Autonomous Okrugs. Moscow, Saint Petersburg, and Sevastopol have a special status of Federal Cities.

2.2. Methodology

The information collected by the author in an electronic database of technological and natural-technological accidents is analyzed in this study. The database is constantly updated with new information (Petrova, 2011). Currently, it contains about 20 thousand events from 1992 to 2018. Official

115 daily emergency reports of the EMERCOM¹ of Russia and media reports serve as data sources. Only open data is used. The time and place of occurrence, type of accident, the number of deaths and injuries, economic and environmental losses, if any, the probable cause of the accident, if available, a brief description and source of information are recorded there (Figure 2). The transport accidents and traffic interruptions caused by natural events are also listed.

120 It should be noted that it is not possible to fully cover all the accidents in the database, because they are too numerous. The minimum quantitative criterion for entering an event into the database is as follows: at least five dead, ten injured or large economic damage. Only such severe accidents are reported by the EMERCOM of Russia. Nevertheless, the database provides a unique opportunity to monitor and analyze the events that are not always included into the statistics (e.g., impacts of natural hazards, etc.).

125 Statistical and geographical analysis of the information accumulated in the database was carried out. Based on the results of the analysis, the role of natural factors among all the causes of various types of transport accidents and traffic disruptions was evaluated. Road, railway, air, and water transport were taken into consideration.

130 135 An assessment was made of the risk of road and railway accidents and traffic disruptions, as well as the total risk of all the considered transport accidents and disruptions caused by adverse and hazardous natural impacts on the transport infrastructure in Russian federal regions. Occurrence frequencies of transport accidents and traffic disruptions for the six-year period from 2013 to 2018 were used as risk indicators. For this purpose, the average annual number of accidents was calculated for each federal region and each type of transport. All the federal regions were divided into groups by their levels of risk. For the analysis, the period from 2013 to 2018 was chosen, since it covered the most representative information. Using the method of cartogram, maps were created showing the results of the assessment.

3. Results

135 140 145 150 155 160 **3.1. Contributions of natural hazards**
The transport infrastructure of Russia is exposed to multiple impacts of various natural hazards and weather phenomena such as heavy rains and snowfalls, floods, earthquakes, volcanic eruptions, landslides, debris flows, snow avalanches; rock falls, icing conditions of roads, and others. In many cases, these impacts occur simultaneously or successively, one after another, and reinforce each other. Contributions of various natural factors to occurrences of different types of transport accidents and traffic disruptions including road, railway, air, and water transport are revealed. Table 1 shows these results. The “+” sign marks impacts of the listed natural hazards that caused accidents and disruptions on the corresponding type of transport recorded in the database over 1992 to 2018. The most adverse impacts were caused by natural hazards of meteorological and hydrological origin.

3.1.1. Automobile transport

Automobile transport facilities and road infrastructure are exposed to adverse and hazardous natural processes and phenomena practically all around Russia. Many sections of roads, bridges and other road infrastructure are subject to impacts of snowfalls and snowstorms, heavy rainfalls, flooding, landslides, icy conditions, debris flows, snow avalanches, rock falls, and other natural hazards. These negative impacts trigger road accidents and traffic disruptions causing many social problems. Under unfavorable meteorological conditions, the risks of car crashes as well as the delay of transportation are increasing, whereas the speed of traffic flow is decreasing (Petrova and Shiryaeva 2019).

During the study period from 1992 to 2018, the following natural hazard impacts that caused accidents and traffic disruptions are identified. The brackets indicate the regions where these accidents and failures occurred:

- **heavy snowfall** (Altai Republic; Altai, Kamchatka, Krasnodar, Krasnoyarsk, Primorsky, Stavropol, and Khabarovsk Territories; Jewish AO; Yamalo-Nenets AD; Amur, Volgograd, Magadan, Murmansk, Orenburg, Rostov, Sakhalin, and Chelyabinsk Regions);
- **bottom snowstorm** (Republics of Bashkortostan and Komi; Altai, Kamchatka, and Krasnoyarsk Territories; Volgograd, Magadan, Murmansk, Orenburg, Sakhalin, Ulyanovsk, and Chelyabinsk Regions);

¹ The Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters.

165 • ***ice phenomena*** (Republics of Bashkortostan, Kalmykia, and Khakassia; Primorsky, and Khabarovsk Territories; Jewish AO; Leningrad, Magadan, Rostov, Sakhalin, and Chelyabinsk Regions);

170 • ***abnormally low air temperature*** (Yamalo-Nenets AD; Krasnoyarsk Territory; Kemerovo, Novosibirsk, Omsk, and Tomsk Regions);

175 • ***flooding of road due to heavy rain*** (Moscow; Altai Republic, Bashkortostan, Buryatia, Sakha (Yakutia), Khakassia, and Tyva; Chukotka AD; Altai, Krasnodar, Primorsky, and Stavropol Territories; Amur, Arkhangelsk, Leningrad, Magadan, Moscow, Nizhny Novgorod, Novgorod, Sakhalin, and Saratov Regions);

180 • ***washout of road*** (Republic of Sakha (Yakutia); Kamchatka Territory; Sverdlovsk and Tyumen Regions);

185 • ***debris flow*** (Chechen Republic, Kabardino-Balkaria, Karachay-Cherkessia, and Republic of North Ossetia-Alania; Krasnodar Territory; Sakhalin Region);

190 • ***snow avalanche*** (Republic of Dagestan, North Ossetia-Alania);

195 • ***rock fall*** (Republic of Dagestan, North Ossetia-Alania);

200 • ***volcanic eruption*** (Kamchatka Territory).

180 **3.1.2. Railway transport**
More than 7% of all railway accidents and failures registered in the database were triggered by natural factors. Over 1992 to 2018, impacts of natural hazards caused railway accidents and traffic disruptions in 29 from 85 federal regions of Russia.
The identified natural hazards that caused these harmful events are listed below. The brackets indicate the regions where these accidents and failures occurred:

185 • ***heavy snow*** (Yamalo-Nenetskii AD; Orenburg and Sakhalin Regions);

190 • ***washout of railway as a result of heavy rain and flash flood*** (Dagestan, Karelia, Udmurtia, and Chuvashia Republics; Amur and Sakhalin Regions; Khabarovsk and Krasnodar Territories);

195 • ***snow avalanche*** (Sakhalin Region; Khabarovsk Territory);

200 • ***rails deformation due to heat wave*** (Kalmykia Republic; Rostov Region);

205 • ***landslide*** (Krasnodar Territory; Orel Region);

210 • ***debris flow*** (Sakhalin Region; Krasnodar Territory);

215 • ***rock fall*** (Khabarovsk and Krasnodar Territories; Bashkortostan Republic);

220 • ***flooding due to melting snow*** (Murmansk and Vologda Regions).

195 **3.1.3. Air transport**
The adverse weather conditions and other natural hazard impacts caused more than 8% of all the air transport accidents and traffic disruptions recorded in the database. Over 1992 to 2018, these events were registered in Moscow, Sakhalin, Irkutsk, Magadan, Murmansk, and Rostov Regions, Kamchatka, Khabarovsk, Krasnodar, and Krasnoyarsk Territories, and the Republic of Khakassia. The following impacts of natural hazards were revealed: strong winds, thunderstorms, heavy rains, snowfalls, snowstorms, sleet, runway icing, fog, and snow avalanches.

205 **3.1.4. Water transport**
The greatest contribution of natural factors to the accident rate was recorded for water transport. Almost 16% of all the water transport accidents registered in the database were caused by various natural hazards. The following impacts were revealed from 1992 to 2018: strong winds, storms, snowstorms, icing, thunderstorms, fog, and mist.

210 **3.2. Risk of transport accidents and traffic disruptions**
Occurrence frequencies of road, railway, air, and water accidents and failures due to natural hazard impacts at the level of Russian federal regions were estimated. All the federal regions were divided into groups by their risk levels of road and railway accidents, as well as the total risk of transport accidents and traffic disruptions. The resulting maps were created and analyzed. Regional differences in the risk of transport accidents were found. Below are the main results of the risk assessment.

215 **3.2.1. Automobile transport**

220 Risk of road accidents and traffic disruptions due to natural hazard impacts within the Russian federal regions is assessed. Occurrence frequencies (annual average numbers) of road accidents and traffic disruptions over 2013 to 2018 are used as risk indicators. 484 serious road accidents and traffic disruptions caused by impacts of natural hazards were taken into consideration. All the federal regions are divided into five groups by their risk levels. The resulting map is shown in the Figure 3. Regions of the Far East of Russia (Magadan and Sakhalin Regions, Khabarovsk Territory) and Krasnoyarsk Territory in the southern part of Central Siberia have the highest risk level. The road infrastructure in these regions is mostly affected by the above listed natural hazard impacts especially those of heavy snowfalls and snowstorms, ice phenomena, abnormally low air temperature, heavy rains, and debris flows.

225
230 Risk of railway accidents and traffic disruptions due to natural hazard impacts at the level of Russian federal regions is assessed. 63 serious events were taken into consideration. Occurrence frequencies (annual average numbers) of railway accidents and disruptions are used as risk indicators. All the federal regions are divided into three groups by their risk levels. The resulting map is shown in the Figure 4. Regions of the Far East (Sakhalin Region; Khabarovsk Territory) and Krasnodar Territory in the southern part of European Russia have the highest level of risk. Railways in these regions are mostly affected by the impacts of heavy snowfalls, heavy rains, snow avalanches, landslides, debris flows, and rock falls.

235
240 **3.2.2. Railway transport**
Risk of railway accidents and traffic disruptions due to natural hazard impacts at the level of Russian federal regions is assessed. 63 serious events were taken into consideration. Occurrence frequencies (annual average numbers) of railway accidents and disruptions are used as risk indicators. All the federal regions are divided into three groups by their risk levels. The resulting map is shown in the Figure 4. Regions of the Far East (Sakhalin Region; Khabarovsk Territory) and Krasnodar Territory in the southern part of European Russia have the highest level of risk. Railways in these regions are mostly affected by the impacts of heavy snowfalls, heavy rains, snow avalanches, landslides, debris flows, and rock falls.

3.2.2. Railway transport

The number of air transport accidents and traffic disruptions was included in the calculation of the total risk of transport accidents and disruptions. 70 serious incidents were taken into consideration.

245
250 **3.2.3. Air transport**
Water transport accidents were also included in the calculation of the total risk of transport accidents and disruptions. 70 serious incidents were taken into consideration.

255 **3.2.4. Water transport**
Additionally, the total risk of transport accidents and traffic disruptions was assessed for the area of Russia. Occurrence frequencies of all the above listed types of accidents and disruptions over 2013 to 2018 were used as risk indicators; annual average numbers of these events were calculated for each federal region. All the federal regions were divided into five groups by their risk levels. The resulting map is shown in the Figure 5. Regions of the Far East (Magadan and Sakhalin Regions; Kamchatka, Khabarovsk, and Primorsky Territories), Krasnoyarsk Territory in the southern part of Central Siberia, and Krasnodar Territory in the southern part of European Russia have the highest level of risk. The transport infrastructure in these regions is mostly affected by the impacts of the above listed natural hazards.

255
260 **3.2.5. The total risk**
Contributions of various natural hazards to occurrences of different types of transport accidents and traffic disruptions including road, railway, air, and water transport are revealed. Among all the identified types of natural hazards, the largest contributions to transport accidents and disruptions have hydro-meteorological hazards such as heavy snowfalls and rains, floods, and ice phenomena.

265 An annual average frequency of occurrences of severe events was chosen in this study among all possible methods for assessing risk. The index used combines both the probability and severity of the adverse impacts of natural hazards on transport infrastructure, as well as vulnerability of infrastructure to these adverse impacts resulting in accidents and malfunctions. Using this method, it is possible to compare between different regions and identify deficiencies that need to be addressed.

270 Regional differences in the risk of transport accidents between Russian federal regions were found. All the federal regions were divided into groups by their risk levels of road and railway accidents, as well as the total risk of transport accidents and traffic disruptions. The resulting maps were created and analyzed. The Magadan and Sakhalin Regions; Kamchatka, Khabarovsk, Krasnodar, Krasnoyarsk, and Primorsky Territories are characterized by the highest risk of transport accidents and traffic disruptions. More than five severe events per year during 2013-2018 were recorded in these regions (Figure 5). Murmansk, Orenburg, and Rostov Regions, Altai Territory, the Republic of North Ossetia (Alania) and Moscow also have a high risk level with an average probability of 3.0-4.5 events per year. It is in these regions that the

275 necessary measures should first be taken to reduce the vulnerability of transport infrastructure to undesirable natural impacts and increase level of protection and preparedness.
Under conditions of observed and forecasted global and regional climate changes, adverse and hazardous natural impacts on various facilities of transport infrastructure, primarily from natural hazards of meteorological and hydrological origin, as well as other natural events triggered by them such as landslides, snow avalanches, and debris flows are expected to increase (Geography..., 2004; Yakubovich et al., 2018). Other factors, such as growing transportation network, increased traffic, and the lack of funding will also lead to increasing of adverse impacts, especially in the identified regions most at risk. In this regard, continuous monitoring and assessment of natural hazard impacts is especially relevant and important.
Only severe accidents were considered in this study due to a lack of data on small events. This gap should be filled in a future research because small events can also cause a great damage to the infrastructure and trigger accidents and traffic interruptions.
Effects of global processes such as space weather on the transport infrastructure facilities, especially on electronics and automatic machinery were not taken into consideration because these events were not recorded in the database. In the future, these impacts should be also investigated; risk of these events should be considered in the risk assessment.

290
295
300
310
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
950

330 Chakrabarty, N. and Gupta, K.: Analysis of Driver Behaviour and Crash Characteristics during Adverse Weather Conditions, *Procedia - Social and Behavioral Sciences*, 104, 1048-1057, 2013.

Desiatov, V.P., Osipov, A.I., and Suzdal'skaya, O.V.: Solar Activity and Death-Rate Statistics, The Sun, Electricity, Life, *Proceedings of Memorial Readings devoted to A. L. Chijevskii*, Moscow, 90-92, 1972. (In Russian).

335 Edwards, J. B.: Weather-related road accidents in England and Wales: a spatial analysis, *J. of Transport Geography*, 4(3), 201-212, 1996.

Eidsvig et al.: Assessing the risk posed by natural hazards to infrastructures, *Nat. Hazards Earth Syst. Sci.*, 17, 481-504, 2017.

340 Epov, A.B.: Regularities in Occurrence of Technological Emergencies and their Relationship with Natural Processes, *Problems of Safety under Emergencies*, 12, 14-20, 1994. (In Russian).

FSSS: Russian Statistical Yearbook 2018: Stat. book, Rosstat, Moscow, 2018.

345 Geography, society, environment, Collective monograph, v. 4: Natural and anthropogenic processes and environmental risk, Moscow, Gorodets Publishing House, 2004.

Girina, O. A., Manevich, A. G., Melnikov, D. V., Nuzhdaev, A. A., and Petrova, E. G.: 2016 volcano eruptions in Kamchatka and the Northern Kuriles and their danger to aviation, *J. of Volcanology and Seismology*, 3, 34-48, 2019.

350 Govorushko, S. M.: Natural processes and Human impacts: Interaction between Humanity and the Environment, Springer, Dordrecht, 2012.

Hong, L., Ouyang, M., Peeta, S., He, X., and Yan, Y.: Vulnerability assessment and mitigation for the Chinese railway system under floods, *Reliability Engineering and System Safety*, 137, 58-68, 2015.

Jaiswal, P. and van Westen, C. J.: Use of quantitative landslide hazard and risk information for local disaster risk reduction along a transportation corridor: a case study from Nilgiri district, India, *Nat. Hazards*, 65, 887-913, <https://doi.org/10.1007/s11069-012-0404-1>, 2013.

355 Jaroszweski, D., and McNamara, T.: The influence of rainfall on road accidents in urban areas: A weather radar approach, *Travel Behaviour and Society*, 1(1), 15-21, doi:10.1016/j.tbs.2013.10.005, 2014

Kanonidi, H.K., Oraevskii, V.N., Belov, A.V., Gaidash, S.P., and Lobkov, V.L.: Railway Automatic System Failures under Geomagnetic Storms, *Problems of Emergency Forecasting*, Proceedings, Moscow: Russian Ministry of Emergencies, 41-42, 2002. (In Russian).

360 Kaundinya, I., Nisancioglu, S., Kammerer, H., and Oliva, R.: All-hazard guide for transport infrastructure, *Transportation Research Procedia*, 14, 1325-1334, 2016.

Kellermann, P., Schoenberger, C., and Thielen, A. H.: Large-scale application of the flood damage model Railway Infrastructure Loss (RAIL), *Nat. Hazards Earth Syst. Sci.*, 16, 2357-2371, 2016.

Kishcha, P.V., Ivanov-Cholodny, G.S., and Shelkovnikov, M.S.: Zoning of air crashes, *Physical Problems of Ecology*, Proceedings, Moscow, 18-19, 1999.

365 Ludvigsen, J. and Klæboe, R.: Extreme weather impacts on freight railways in Europe, *Nat. Hazards*, 70, 767-787, <https://doi.org/10.1007/s11069-013-0851-3>, 2014.

Mattsson, L. G., and Jenelius, E.: Vulnerability and resilience of transport systems - a discussion of recent research, *Transportation Research A: Policy and Practice*, 81, 16-34, 2015.

370 Miagkov, S.M.: *Geography of Natural Risk*, Moscow: Moscow Univ. Press, 1995. (In Russian).

Nogal, M., O'Connor, A., Caulfield, B., and Brazil, W.: A multidisciplinary approach for risk analysis of infrastructure networks in response to extreme weather, *Transportation Research Procedia*, 14, 78-85, 2016.

Nyberg, R. and Johansson, M.: Indicators of road network vulnerability to storm-felled trees, *Nat. Hazards*, 69, 185. <https://doi.org/10.1007/s11069-013-0693-z>, 2013.

375 Petrova, E.: Critical infrastructure in Russia, *Geographical analysis of accidents triggered by natural hazards*, *Env. Eng. and Management J.*, 10(1), 53-58, 2011.

Petrova, E.: Natural hazards and technological risk in Russia: the relation assessment. *Nat. Hazards Earth Syst. Sci.*, 5, 459-464, doi: 10.5194/nhess-5-459-2005, 2005.

380 Petrova, E.: Road accidents in Russia: statistical and geographical analysis, *Scientific Annals of "Alexandru Ioan Cuza" University of Iasi, Geography series*, 2013, 59(2), 111-123.

Petrova, E.: Road and railway transport in Russia: safety and risks, *AES Bioflux*, 7(2), 259-271, 2015.

Petrova, E. G., Shiryaeva, A. V.: Road accidents in Moscow: weather impact, *AES Bioflux*, 11(1), 19-30, 2019.

Rakha, H., Farzaneh, M., Arafah, M., Hranac, R., Sterzin, E. and Krechmer, D.: Empirical Studies on Traffic Flow in Inclement Weather, Final Report – Phase I, 2007.

Shabou, S., Ruin, I., Lutoff, C., Debionne, S., Anquetin, S., Creutin, J.-D., and Beaufils, X.: MobRISK: a model for assessing the exposure of road users to flash flood events, *Nat. Hazards Earth Syst. Sci.*, 17, 1631–1651, <https://doi.org/10.5194/nhess-17-1631-2017>, 2017.

390 Schlögl, M., Richter, G., Avian, M., Thaler, T., Heiss, G., Lenz, G., and Fuchs, S.: On the nexus between landslide susceptibility and transport infrastructure – an agent-based approach, *Nat. Hazards Earth Syst. Sci.*, 19, 201–219, <https://doi.org/10.5194/nhess-19-201-2019>, 2019.

Shiryeva, A. V.: Meteorological Conditions for Functioning of Automobile Transport in Moscow and Moscow Oblast, *Izvestia Russia Academy of Sci.*, 6, 94-101, 2016. (In Russian).

395 Spasova, Z. and Dimitrov, T.: The effects of precipitation on traffic accidents in Sofia, Bulgaria, *Asklepios, International Annual for History and Philosophy of Medicine*, X (XXIX), 1, 76–81, 2015.

Tanner, J. C.: Effect of Weather on Traffic Flow, *Nature*, 4290, 1952.

Transport strategy of the Russian Federation for the period until 2030, as amended on 12/05/2018. Available from: <https://www.mintrans.ru/documents/3/1009>

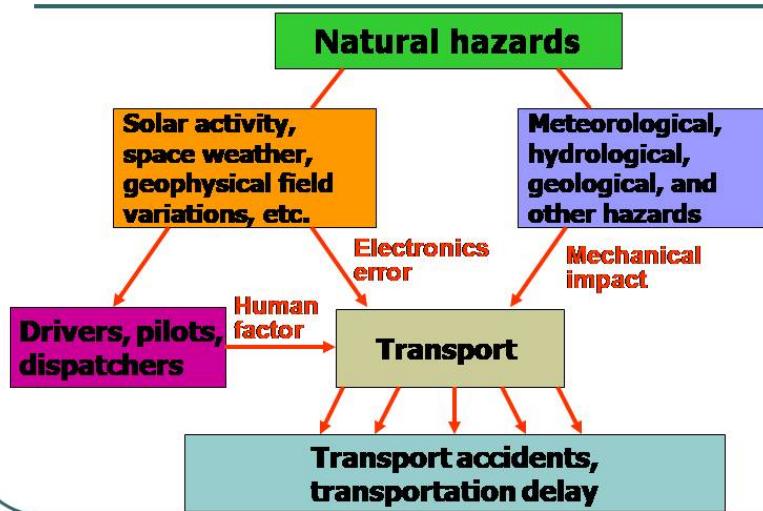
400 Voumard, J., Derron, M.-H., and Jaboyedoff, M.: Natural hazard events affecting transportation networks in Switzerland from 2012 to 2016, *Nat. Hazards Earth Syst. Sci.*, 18, 2093–2109, <https://doi.org/10.5194/nhess-18-2093-2018>, 2018.

WHO: The top 10 causes of death. Available from: <http://www.who.int/mediacentre/factsheets/fs310/en/>, 2017.

405 Yakubovich, A., Trofimenko, Y., Pospelov P.: Principles of developing a procedure to assess consequences of natural and climatic changes for transport infrastructure facilities in permafrost regions, *Transportation Research Procedia* 36, 810–816, 2018.

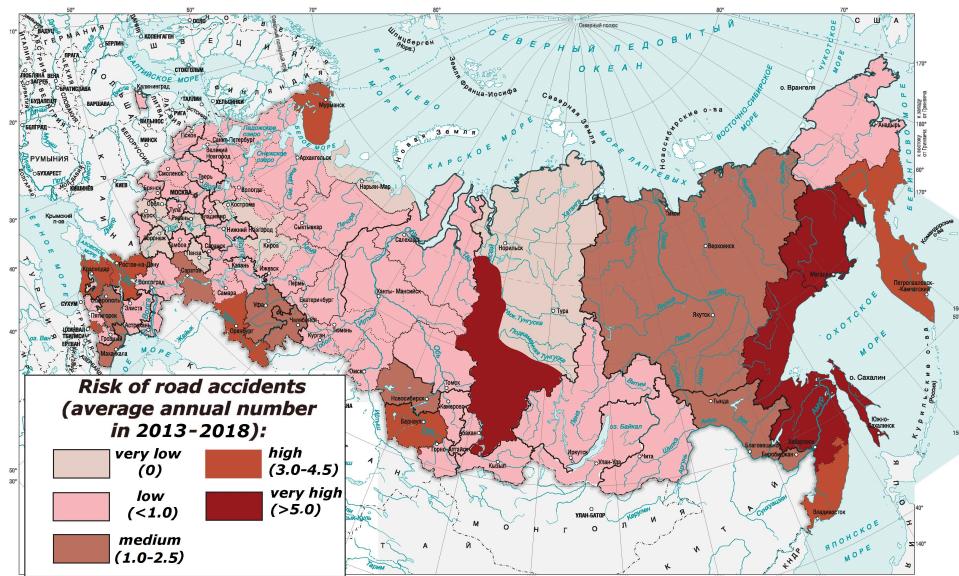
Yang, J., Sun, H., Wang, L., Li, L., and Wu, B.: Vulnerability Evaluation of the Highway Transportation System against Meteorological Disasters, *Procedia - Social and Behavioral Sciences*, 96, 280 – 293, 2013.

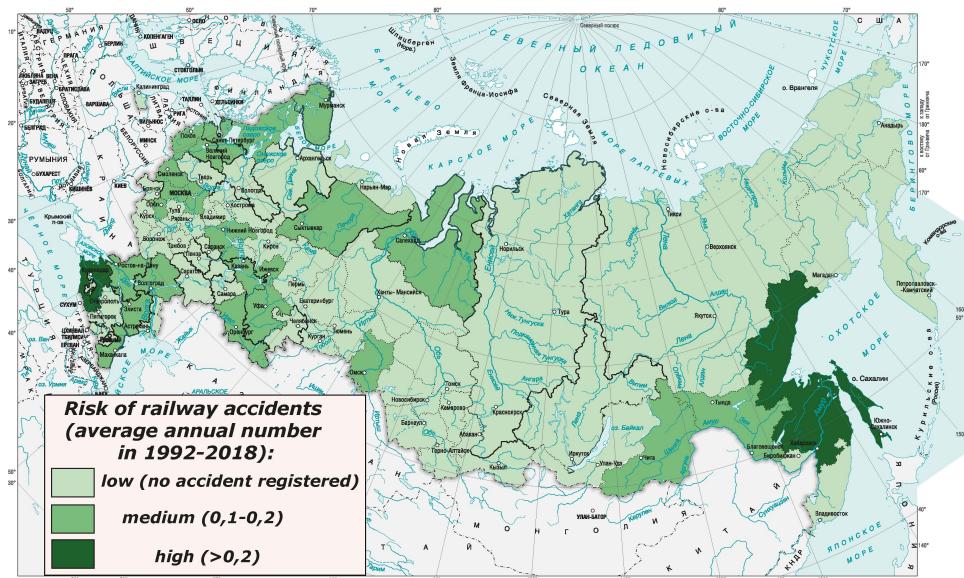
410


Table 1: Transport accidents and traffic disruptions caused by natural hazards in Russia (1992-2018)

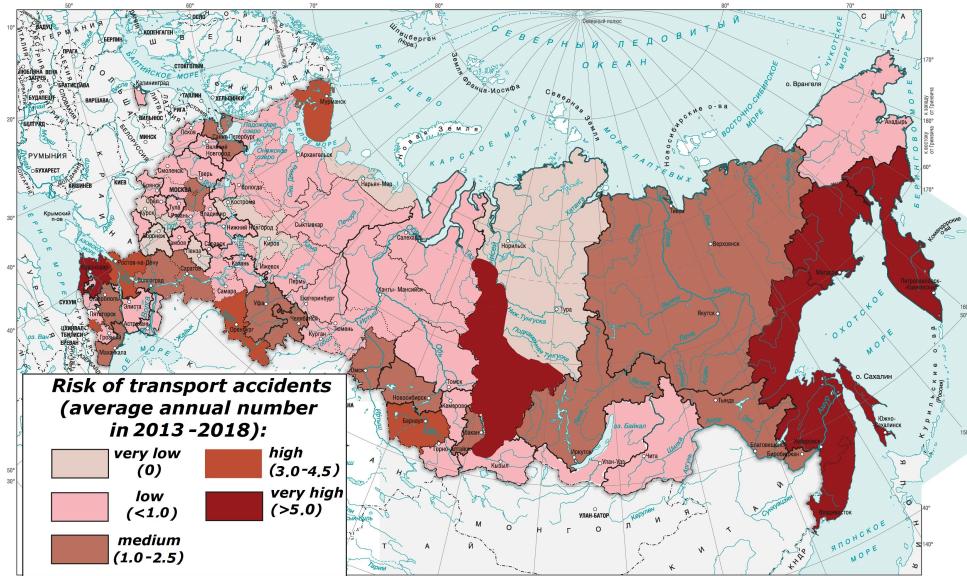
415

Natural hazard	Type of transport	Road transport	Railway transport	Air transport	Water transport
Strong wind, storm				+	+
Snowfall, snowstorm, snowdrift, sleet	+	+	+	+	+
Rainfall, hailstone	+	+	+	+	
Hard frost, icing, ice-crusted ground	+			+	+
Thunderstorm, lightning				+	+
Fog, mist	+			+	+
Flood	+	+			
Heat wave			+		
Earthquake, volcanic eruption	+				
Landslide, slump, debris flow	+	+			
Rock fall	+	+			
Snow avalanche	+	+	+	+	


Natural hazard impacts on the transport infrastructure


420 Figure 1: Grouping of natural hazards based on their genesis and impacts on transport infrastructure

425


Figure 2: Fragment of the database

430 Figure 3: Risk of road accidents and traffic disruptions triggered by natural hazards in the RF (base map: © DIK - Publishing House Design. Information. Cartography)

435 **Figure 4: Risk of railway accidents and traffic disruptions triggered by natural hazards in the RF (base map: © DIK - Publishing House Design. Information. Cartography)**

440 **Figure 5: Risk of transport accidents and disruptions triggered by natural hazards in the RF (base map: © DIK - Publishing House Design. Information. Cartography)**